

Engaging Content Engaging People

Talking to Machines: The System

Christian Saam, Trinity College Dublin

The ADAPT Centre is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

Motivation

- Short overview of classic rule-based vs. stochastic
- Neural network dialogue systems
- User modeling

Motivation

Spoken Dialog Systems - hot topic

- rise of conversational agents Siri, Cortana, Alexa etc.
- rise of web-based chat-bots
- promise of virtual companions
- performance improvements in base technology ASR
- ease/naturalness of interaction
- proliferation of mobile devices and ubiquitous use

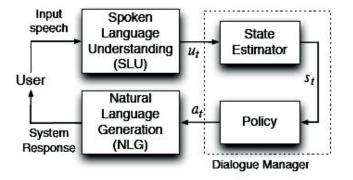
Application of spoken dialogue systems

task-oriented	non task-oriented
use of dialogues to accomplish a task	conversational interaction but not necessarily to achieve task
provide information (interactive question answering), complete task (book train), personal assistant	social dialog

- Mixed and user initiative hard to control system initiative often restrictive and inflexible
- More open domains require extensive effort in rule-based systems
- Inherent uncertainty
 - \circ speech can be noisy
 - language is ambiguous
 - \circ user is undecided

Uncertainty is well modeled with probabilities

(Partially Observable) Decision Process



Finite state spoken dialogue system (Young et al., 2013)

Input Belief observation state b_t Dialogue Model M Reward Σ SLU (parameters τ) Function R User Reward Policy Model P NLG (parameters θ) a Maximise Σ System **Dialogue Manager** wrt θ , τ action

POMDP-based spoken dialogue system (Young et al., 2013)

convert input speech to an abstract representation of the user's intent u_t	decode input speech into noisy observation o_t of underlying intent u_t
update dialogue state s_t	update belief distribution b_t over all possible states
apply deterministic decision rule (<i>policy</i>) mapping state to response action <i>a</i> _t	apply stochastic rule to choose <i>a_t</i>
rules of State Estimator and Policy are hand-crafted	parameters of <i>M</i> and <i>P</i> can be optimised with reinforcement learning given appropriate reward function

need expertise	need lots of data
design error handling strategies or restrict interaction	learn from interaction
in real-world scenarios many rules	in real-world scenarios state-space explodes and becomes hard to handle requiring complex algorithms and computational power
need to fine-tune	can learn optimal decision policies

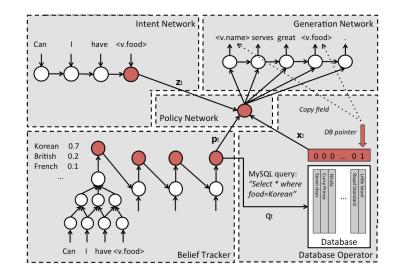
- simple case, replicate traditional modular approach with a pipeline of trained neural networks
- need labels at every module
- can use S2S approach for all models
- example: state tracker

Output: slot-value pair sequence LSTM decoder BLSTM encoder 0 0 $h_{n,1}$ $g_{n,1}$ $h_{n,1}$ $g_{n,2}$ $h_{n,1}$ $g_{n,2}$ $g_{n,3}$ $g_{n,4}$ $g_{n,3}$ g

Dialogue state tracking with attention-based sequence to sequence learning (Hori et al., 2016)

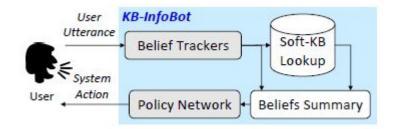
End-to-end: Modular Neural Network

- classic modules in S2S approach
- belief tracker pre-trained with cross entropy error btw slot-value labels and predictions
- other params optimised with cross entropy error from GN predictions
- extra database operator (not differentiable, not trained)



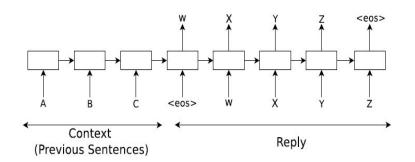
End-to-end trainable dialogue system (Wen et al., 2016)

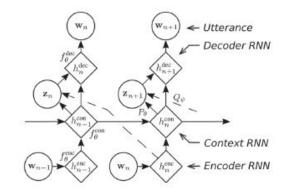
- replace symbolic querying with induced "soft" posterior distribution over knowledge base
- can integrate learning of
 DB access in reinforcement
 learning



End-to-end infobot trained with RL (Dinghra et al., 2017)

End-to-End: Sequence-to-Sequence Models





Seq2Seq Conversational Dialogue Model (Vinyals, Le, 2015)

Latent Variable Hierarchical Recurrent Encoder-Decoder (Serban et al., 2017)

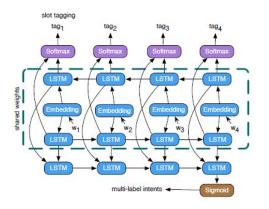
- tend to generate repetitive generic answers
 - hierarchical encoder to represent levels of dialogue organisation
 - incorporate latent variable model to capture variation
 - diversity enhancing decoding
 - augment supervised training with RL to account for future
 - adversarial training
- cannot easily incorporate domain knowledge/constraints

End-to-end: Unifying Models

- NLU error prone
- noisy NLU output affects DM
- retraining of one component may adversely affect other component
- unify NLU and DM in one model



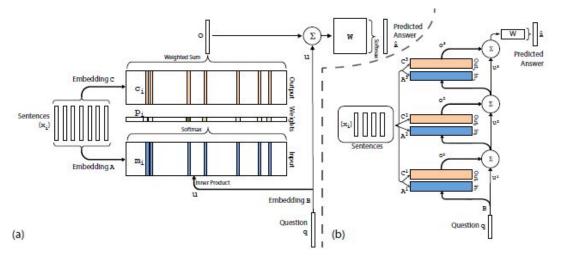
End-to-end joint NLU-DM Model (Yang et al., 2016)



Detail NLU model (Yang et al., 2016)

End-to-End: Memory Augmentation

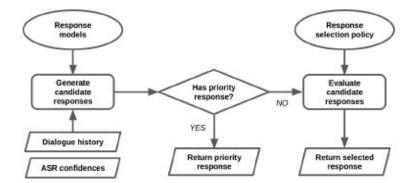
- plain end-to-end s2s models attractive as simple
- success on chit-chat doesn't carry over to tasks
- alternative non-modular end-to-end approach



Single (a) and multi-layer (b) End-to-end Memory Networks (Sukhbaatar et al., 2015) used in Bordes et al., 2017

Conversational DS: Ensemble

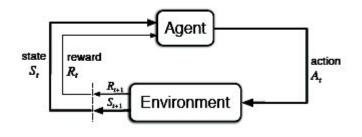
- to cope with topic variability train many dialog systems (conversational, info-seeking, story telling etc.)
- use a reinforcement learned meta-process to choose best move among all responses



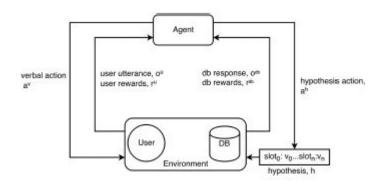
Large ensemble model conversational agent Dialogue Manager control flow (Serban et al., 2017)

Reinforcement Learning

- Dialogue Policy model takes dialogue state s_n as input and produces system action a_n as output.
- Dialogue Policy modeled by MDP {S, A, P, R, γ}
- Policy Learning can be cast as a Reinforcement Learning problem
- Cumulative Reward is $G_n = \sum_k \gamma^k r_{n+k}$
- The objective is to maximize Cumulative Reward
- 3 popular Policy Learning frameworks
 - Value-based RL
 - Policy-based RL
 - Actor-critic RL



Agent-environment interaction in a Markov Decision Process (Sutton, Barto, 2017)



End-to-end task-oriented Dialog Manager (NLU+DST+DM) (Zhao, Eskenazi, 2016)

- So far mostly simple preferences
- For companions need long term deep understanding of user
 o current state vs. slow changing base state
- Probably need to model ontology of complex social relations
- Desirable to acquire this ontology from text mining

